首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   99篇
  免费   6篇
  国内免费   1篇
测绘学   1篇
大气科学   6篇
地球物理   42篇
地质学   29篇
海洋学   25篇
天文学   1篇
自然地理   2篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   4篇
  2017年   4篇
  2016年   4篇
  2015年   1篇
  2014年   5篇
  2013年   2篇
  2012年   4篇
  2011年   8篇
  2010年   4篇
  2009年   4篇
  2008年   7篇
  2007年   1篇
  2006年   3篇
  2005年   5篇
  2004年   1篇
  2003年   5篇
  2002年   1篇
  2001年   2篇
  2000年   2篇
  1999年   6篇
  1998年   3篇
  1996年   1篇
  1995年   2篇
  1994年   4篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   6篇
  1985年   1篇
  1984年   1篇
  1981年   1篇
排序方式: 共有106条查询结果,搜索用时 206 毫秒
1.
Summary Two co-existing plutonic rocks (diorite and granodiorite) were studied from an intrusion of Variscan age in the Raztocna Valley – Nízke Tatry Mountains, Western Carpathians. Geochemical analyses of major and trace elements constrain a volcanic arc as emplacement environment and give the first hints of a mixture of two magmatic end-members: the so-called Prasivá granodiorite and the Raztocna diorite. The 87Sr/86Sr(0) ratios vary between 0.7075 and 0.7118, the ε Nd(0) values range from −1.4 to −5.0. Common Pb isotopes reveal a dominant crustal source with minor influences from a mantle and a lower crustal source. Modelling based on Sr and Nd isotope data and using three component mixing calculations indicates that mixing of 2/3 of upper mantle material with 1/3 upper crustal material can produce the isotopic composition of the Raztocna diorite. Very minor amounts of lower crust were incorporated in the diorite. For the Prasivá granodiorite, the mixing ratio of upper mantle and upper crust is similar, but a lower crustal reservoir contributed about 5–10% of the source material.  相似文献   
2.
Concentrations of total carbonate, alkalinity and dissolved oxygen were obtained near the 1973 GEOSECS stations in the North Pacific subpolar region north of 40°N along 175°E between 1993 and 1994. A difference of excess CO2 content between the GEOSECS and our expeditions was estimated. The maximum difference in water column inventory of excess CO2 has increased by about 280 gC m–2 above 2000 m depth which apparently means an uptake of excess CO2 taken from air to sea during the last two decades. An averaged value of the annual flux of excess CO2 at 75–1000 m depth was 8.63±2.01 gC m–2yr–1 in the North Pacific subpolar region. By introducing the annual flux of excess CO2 into a two-box model for the North Pacific subpolar region, a penetration factor of excess CO2 from air to sea was obtained to be 1.08×10–2 gC m–3ppm–1 in the North Pacific subpolar region. Based on this factor, the surface concentration of excess CO2 in the North Pacific subpolar region was estimated to be 68 mole I–1, suggesting that the North Pacific subpolar region absorbed atmospheric excess CO2 more than the saturated concentration of excess CO2. Total amount of excess CO2 taken from the North Pacific subpolar region by 1993 was estimated to be 36.2×1015 gC, which was equal to about one tenth of that released by human activities after the preindustrial era.  相似文献   
3.
Radiocarbon and total carbonate data were obtained near the 1973 GEOSECS stations in the North Pacific along 30°N and along 175°E between 1993 and 1994. In these stations, we estimated radiocarbon originating from atomic bomb tests using tritium, trichlorofluoromethane and silicate contents. The average penetration depth of bomb radiocarbon during the two decades has deepened from 900 m to 1300 m. Bomb radiocarbon inventories above the average value for the whole North Pacific were found widely in the western subtropical region around 30°N both in the 1970s and 1990s, and its area in the 1990s was broader than that in the 1970s. In most of the North Pacific, while the bomb radiocarbon has decreased above 25.4, the bomb radiocarbon flux below 25.4 was over 1 × 1012 atom m-2yr-1 in the subtropical region around 30°N. In the tropical area south of 20°N, the bomb radiocarbon inventory below 25.4 increased from zero to over 10 × 1012 atom m-2 during the last three decades. These distributions suggest that the bomb radiocarbon removed from the surface is currently accumulated with bomb 14C flux of over 1 × 1012 atom m-2yr-1 below 25.4 in the subtropical region, mainly by advection from the higher latitude, and that part of the accumulated bomb 14C gradually spread southward with about 30 years.  相似文献   
4.
Thirteen vertical profiles of 226Ra and 222Rn in the near-surface water were obtained in the western North Pacific in winter, and the gas transfer velocities across the air-sea interface were estimated. The transfer velocities found by applying a steady state model varied widely from 2.1 to 30.2 m day−1 with a mean of 9.4 m day−1. The mean value is almost 5 times higher than that in summer in other oceans, and the maximum value is a record high for world oceans. This is partly due to the inadequacy of the steady state model, which overestimates when stronger winds blow in more recent days than the 222Rn half-life of about 4 days. In fact, a strong low pressure zone passed through the station about 2 days earlier, which was one of the low pressure zones that with a period of develop once a week or so in the northwestern North Pacific in winter. Instead of steady-state removal, if half of the radon removal occurred sporadically every 7 days, and the last removal took place two days before the observation, the transfer velocity would be 26 m day−1. Our mean transfer velocity, which is less than 20% different from the steady state value including both overestimated and underestimated values, 9.4 ± 4.8 m day−1, seems to represent the mean state of this region in winter. This suggests that the gas exchange fluxes under extremely rough conditions in the open ocean are larger than those estimated by using a transfer velocity equation with a linear or quadratic relationship with wind speed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
5.
The purpose of this study is to apply time series analysis to investigate whether the groundwater quality in the coastal area is affected by the tide. Continuous and regular in situ monitoring data of electrical conductivity (EC) and groundwater level, and tidal level data measured by the National Oceanographic Research Institute were used for the time series analysis. Through the time series analysis, it is known that EC and groundwater level conspicuously fluctuate with two periodicities (15.4 and 0.52-day), which is very similar to those of the tide. Also the behaviors of their fluctuations vary in accordance with the tidal period. These indicate that the groundwater quality has been mainly controlled by the tidal level, and the strength of tidal effect on the groundwater quality is different according to the tidal period.  相似文献   
6.
Submarine groundwater discharge (SGD) plays an important role in coastal biogeochemical processes and hydrological cycles, particularly off volcanic islands in oligotrophic oceans. However, the spatial and temporal variations of SGD are still poorly understood owing to difficulty in taking rapid SGD measurements over a large scale. In this study, we used four airborne thermal infrared surveys (twice each during high and low tides) to quantify the spatiotemporal variations of SGD over the entire coast of Jeju Island, Korea. On the basis of an analytical model, we found a linear positive correlation between the thermal anomaly and squares of the groundwater discharge velocity and a negative exponential correlation between the anomaly and water depth (including tide height and bathymetry). We then derived a new equation for quantitatively estimating the SGD flow rates from thermal anomalies acquired at two different tide heights. The proposed method was validated with the measured SGD flow rates using a current meter at Gongcheonpo Beach. We believe that the method can be effectively applied for rapid estimation of SGD over coastal areas, where fresh groundwater discharge is significant, using airborne thermal infrared surveys.  相似文献   
7.
Submarine groundwater discharge (SGD) is a global phenomenon that carries large volumes of groundwater and dissolved chemical species such as nutrient, metals, and organic compounds to coastal zones. We report the influence of SGD on the coastal waters of Jeju Island, Korea, using high‐resolution aerial thermal infrared (TIR) mapping techniques and field investigations. An aircraft‐based system was implemented using a cost‐effective TIR camera for aerial TIR mapping. Ground‐based calibrations and system integration with GPS/IMU (global positioning system/inertial measurement unit) were performed for the aerial systems. The aerial surveys showed distinct low‐temperature signatures of SGD along the coasts of Jeju Island, revealing large groundwater inputs from the coastal aquifers to the ocean. Multiple aerial surveys over a range of seasons and tidal stages revealed that SGD rates dynamically affect the sea surface temperature (SST) of the coastal zone. The in‐situ measurements supported that SGD has a substantial influence on the coastal water chemistry as well as SST. Our observations highlight the extent to which aerial‐based TIR mapping can serve as a powerful tool for studying SGD and other coastal processes. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
8.
The history of Korean tidal flat management and the process for designating Coastal Wetland Protected Areas (CWPAs) are described. Korean coastal wetlands have a long history of intensive use through reclamation for agricultural and industrial uses in the 20th century. Recently, the management policy is shifting away from intensive use towards the conservation of wetlands. This shift is caused by increasing public awareness of the value of wetlands and strong institutional support from the government. Since the Wetlands Conservation Act was passed in 1999, a total of twelve CWPAs have been designated through both top-down and bottom-up processes. Three designation paths are classified based on the relevant drivers, namely government-driven designations (seven CWPAs), local community driven designations (three CWPAs), and conflict resolution (trade-offs) driven designation (two CWPAs). The lessons learned from the designation of Korean CWPAs is that diversification of designation process could facilitate voluntary participation of local stakeholders and thereby enhance the chance of successful implementation of wise use strategy of tidal flats.  相似文献   
9.
Fifteen rock reference samples "Igneous rock series" issued by the Geological Survey of Japan were analysed for up to 31 elements by neutron activation analysis (NAA); 14 MeV-NAA for Si and Al, fission track method for U, radiochemical and instrumental NAA for rare-earth elements, and instrumental NAA for the remaining elements, with reactor neutrons for the latter three. The present results are compared with published values.  相似文献   
10.
Geochemical processes were identified as controlling factors of groundwater chemistry, including chemical weathering, salinization from seawater and dry sea-salt deposition, nitrate contamination, and rainfall recharge. These geochemical processes were identified using principal component analysis of major element chemistry of groundwater from basaltic aquifers in Jeju Island, South Korea, a volcanic island with intense agricultural activities. The contribution of the geochemical processes to groundwater chemistry was quantified by a simple mass-balance approach. The geochemical effects due to seawater were considered based on Cl contributions, whereas the effects due to natural chemical weathering were based on alkalinity. Nitrogenous fertilizers, and especially the associated nitrification processes, appear to significantly affect groundwater chemistry. A strong correlation was observed between Na, Mg, Ca, SO4 and Cl, and nitrate concentrations in groundwater. Correspondingly, the total major cations, Cl, and SO4 in groundwater were assessed to estimate relative effect of N-fertilizer use on groundwater chemistry. Cl originates more from nitrate sources than from seawater, whereas SO4 originates mostly from rainwater. N-fertilizer use has shown the greatest effect on groundwater chemistry, particularly when nitrate concentrations exceed 6–7 mg/L NO3–N. Nitrate contamination significantly affects groundwater quality and 18% of groundwater samples have contamination-dominated chemistry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号